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a b s t r a c t

The measurement accuracy of a mono-fiber optical probe is studied experimentally using isolated bub-
bles rising freely in a still liquid. The dwell time of the probe tip within the gas phase, which is obtained
from both the optical probe signal and high-speed visualization, is compared with the value expected for
a non-perturbed bubble. The difference originates mainly from the intrusive nature of the optical probe,
which modifies the bubble behavior when it comes into contact with the probe tip. This interaction
increases the dwell time if the bubble is pierced by the probe near its pole, and shortens it for piercing
near the equator. The mean dwell time, obtained by averaging for various piercing locations, is shortened
and the local void fraction indicated by the probe is thus underestimated. It is shown that the void frac-
tion error can be correlated with a modified Weber number, and this correlation is helpful for sensor
selection and for uncertainty estimate. In addition, the distribution of gas dwell time usually differs from
the response expected for an ideal probe. This deviation results from the dependence of the dwell time
error on the piercing location. The dwell time distribution can be used to infer the dependence of the
dwell time on the piercing location. Finally, the deformation of long fibers during the bubble-probe inter-
action significantly increases the measurement error. Observed results are consistent with data of Andre-
otti (2009), which were measured in an airlift flow, suggesting that present results are applicable also to
the case of moving liquid. Conclusions of this study could be applied also to conductivity probes or more
generally to the interaction of a bubble with any kind of thin, intrusive sensor or fiber.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Two-phase gas–liquid systems are widely encountered in
industrial applications, as either gas bubbles in liquids or liquid
drops in gases. The two-phase mixtures are usually non-transpar-
ent and the usual flow-investigation methods (e.g. visual observa-
tion, PIV or LDA) are of limited help. Therefore, probes based on
heat transfer or temperature changes, conductivity probes, back
light scattering probes, RTG tomography, X- or c-ray adsorption,
or wire-mesh sensors are employed for characterization of such
mixtures. For review of these methods, see Tropea et al. (2007)
or Grimes et al. (2006).

One of the most common tools for multiphase flow studies is
the optical probe. It is an intrusive instrument, which was first de-
scribed by Miller and Mitchie (1970). It is based on measuring the
light reflection from a tip of an optical fiber, which is placed in the
measuring point in a gas–liquid mixture. The typical arrangement
ll rights reserved.
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of the measuring system is shown in Fig. 1. The sensitive probe tip
is fabricated by shaping a standard glass fiber used in telecommu-
nications (Cartellier, 1998; Cartellier and Barrau, 1998a; Saito and
Mudde, 2001). The other end of the fiber is split in two branches.
One is connected to a light source (e.g. a laser diode) and the other
leads the reflected light to a photodetector, which generates an
analog output signal. Because of the difference in the refractive
indices of liquid and gas phases, the amount of reflected light de-
pends on the phase surrounding the tip. The photodetector output
voltage has either high or low level if the probe tip is located in gas
or liquid, respectively. Bubbles moving over the probe tip thus gen-
erate a signal that consists of a succession of low and high level
parts (Fig. 1). This signal is useful for the determination of the local
void fraction. Single as well as multiple probes can also be used for
the estimation of bubble velocity (Cartellier, 1992; Cartellier and
Barrau, 1998a,b; Guet et al., 2003), Sauter mean size (Revankar
and Ishii, 1992, 1993), bubble size distribution, interfacial area
density or number density flux (Cartellier 1999).

One can define a phase-indicator function w(t) that is w(t) = 0 if
a point of interest point is occupied by liquid at time t, and that
rises to w(t) = 1 if there is gas (bubble) there. The dwell time si of
ith bubble is the time, during which the point of interest lays inside
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Fig. 2. Considered bubble geometry.

Fig. 1. A scheme of the optical probe measurements.
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this bubble, i.e. during which the phase-indicator function remains
w = 1. The set of dwell times si can be further analyzed. The mean
dwell time s and the probability density function (p.d.f.) of the
dwell time, ps(s), are usually calculated. The local void fraction a
is then determined as

a ¼ lim
ttot!1

P
si

ttot
¼ lim

ttot!1

Ns
ttot

; ð1Þ

where ttot is the total time during that w(t) is studied and N is the
number of bubbles passing through the point of interest. Often, re-
sults are interpreted in terms of the chord length, i.e. the dwell time
multiplied by the bubble velocity. The mean dwell time is used to
evaluate the mean chord length, and the dwell time p.d.f. provides
information about the chord length distribution. The bubble size
distribution can be calculated on basis of these data (see Cartellier
(1999) for detailed discussion).

To obtain w(t) experimentally by an optical probe, its tip is
introduced into the point of interest and the output signal is re-
duced to a phase-indicator function, wop(t). It is then processed
in an analogous way to w(t): the dwell times sop,i are extracted
from wop(t), the local void fraction aop is calculated analogously
to (1) and the dwell time p.d.f. ps,op(s) is evaluated. The experimen-
tal evaluation of w(t) suffers, however, from a weakness consisting
in the intrusive nature of the optical probe. The interaction of the
probe with the bubbles modifies the bubble motion and shape.
At the same time, the bubbles can deform the tiny probe tip and
move its sensitive part from the point of interest. Due to both ef-
fects, the optical probe output wop(t) does not exactly match the
phase-indicator function w(t) in a fixed point in an unperturbed
flow, but it indicates the phase presence in a moving point in a
flow, which is obstructed by the probe. Consequently, the experi-
mentally measured void fraction aop and the p.d.f. of dwell time
ps,op(s) differ from their ideal counterparts a and ps(s). The differ-
ence between w(t) and wop(t), caused by the mutual interaction be-
tween the bubbles and the probe, is the principal source of error of
the measurements.

Several studies have addressed the measuring uncertainty of
optical probes. Barrau et al. (1999) integrated the void fraction pro-
files, which were measured by the optical probe in upward co-cur-
rent bubbly flows, and compared the resulting gas hold-up with
the value obtained using the fast-closing valve technique. For
air–water flows with bubble size above 1 mm and absolute bubble
velocities between 10 and 100 cm/s, the optical probe underesti-
mated the gas hold-up by 1–15%. Barrau et al. have also tried to
identify the mechanisms yielding to these errors and they sug-
gested three most important phenomena: (i) blinding, referring
to an error due to local bubble deformation near the probe tip,
(ii) crawling, which is caused by a bubble deformation at bubble-
size scale and/or by a change of its velocity during the contact,
and (iii) drifting, which is caused by the modification of the liquid
velocity field and consequent changes in the bubble trajectory.

Kiambi et al. (2003) measured the dwell time by a double-tip
optical probe and independently by using a high-speed camera.
They compared the probability density functions of both dwell
times. In air–water system, the optical probe was found to under-
estimate the dwell time. The error of its mean was 12% and 6% for
2.15 and 4.5 mm bubbles, respectively, moving with velocities
comprised between 30 to 40 cm/s. The same error could be ex-
pected for the void fraction measurements with similar bubbles.
The dwell time p.d.f. shifted to shorter dwell times.

Juliá et al. (2005) (available also in Harteveld, 2005) carefully
performed a similar experiment with a mono-fiber stretched opti-
cal probe. They studied the effect of bubble-to-probe offset (dis-
tance x depicted in Fig. 2) on the bubble piercing process and on
the error of the dwell time. When piercing the bubble near its pole
(x/ax smaller than about 0.5, see Fig. 2 for meaning of ax), the dwell
time was overestimated due to bubble deceleration, whilst it was
underestimated because of a significant bubble deformation when
piercing near the equator. Juliá et al. (2005) also integrated the
dwell time profiles to get the bubble volume. The probe underesti-
mated it by 6.5%, 3.7% and 2.8% for air-in-water bubbles with sizes
of 2.8, 3.7 and 5.2 mm, respectively. The absolute bubble velocities
were in range 22–28 cm/s.

Chaumat et al. (2007) analyzed measurements made by a dou-
ble-tip optical probe in conditions of an industrial-scale bubble
column, with either an air–water or air-cyclohexane system. Bub-
ble velocity was of order of 0.5–2 m/s and the bubble Sauter mean
size was in range from 4 to 10 mm. They found, beside others, a
significant underestimation of the measured gas hold-up, which
exceeded 30% in some cases.

Finally, the p.d.f. of the dwell time for 30 and 140 lm optical
probe was provided by Cartellier and Rivière (2001) for an almost
mono-dispersed bubbly flow with spherical bubbles (see Fig. 7 of
this reference). For both probes, ps(s) seriously differs from an
ideal dwell time distribution. While the ideal p.d.f. is monotoni-
cally increasing with s, the observed p.d.f. is oppositely decreasing
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with s, especially in the case of the larger probe. This deviation is
quite common but it has never been satisfactorily explained.

In this study, we will focus on differences between w(t) and
wop(t) and their consequences on the accuracy of the determina-
tion of the local void fraction and of the dwell time p.d.f. One of
our objectives is to determine, how the void fraction error depends
on the bubble size and on the bubble approach velocity. Another
objective is to provide an insight into the phenomena responsible
for the difference between the ideal and experimentally observed
dwell time p.d.f.’s. In our experiments, we have used a mono-fiber
optical probe with a conical tip. Our approach is similar to that of
Juliá et al. (2005): we study an interaction of the optical probe with
isolated bubbles rising in a still liquid. The bubble dwell time sop,
obtained from the optical probe signal, is compared with an esti-
mate of s obtained from the high-speed imaging. This comparison
is repeated for various bubble-probe offsets (distance x in Fig. 2).
The mean dwell time sop is calculated, compared with s and the ex-
pected error on the void fraction measurements is evaluated. The
dependence of the measurement error on the bubble size is stud-
ied. To test how the error depends on the bubble velocity, we have
also studied the bubble-probe interaction in liquids with higher
viscosities (glycerin solutions). Similarly, by assuming the random
offset x, the dwell time p.d.f. ps,op(s) is estimated and compared
with ps(s).

For applicability of our results on accuracy of void fraction mea-
surements to different systems, the bubble-probe interaction is
characterized by suitable dimensionless numbers. The error,
caused by the probe intrusive nature, is their function. Three
dimensionless parameters are needed: two for the characterization
of the rising bubble and another one for describing the probe diam-
eter. The set of dimensionless numbers suitable for describing bub-
ble-probe interaction consists of M, Ca and We. The first of them is
the modified Weber number, M = qD2u1

2/(rDop), where D is the
bubble volume-equivalent size, Dop is the diameter of probe fiber,
u1 is the bubble velocity before coming into contact with the probe,
q is the liquid density and r is the liquid surface tension. M char-
acterizes the ability of a bubble to overcome the surface-tension
forces coming from the probe tip. It is a ratio of bubble momentum
(�qD3�u1) to the impulsion of the surface-tension force from the
probe (�rDop�D/u1). The second dimensionless number is the cap-
illary number, Ca = lu1/r, where l is the liquid viscosity. It de-
scribes the relative importance of viscosity and surface-tension
effects and it also is the controlling parameter for the thickness
of the film being deposited on the probe tip (see e.g. Quéré,
1999). Finally, the last parameter is the Weber number, We = q-
Du1

2/r, which compares the inertial and surface-tension effects
Fig. 3. The schema of e
at the bubble-size scale. In the case of small bubbles in low-viscos-
ity liquids, We determines the bubble shape. With the above defi-
nitions, it holds M = We D/Dop. We also remark that the rising
bubble itself is described here by Ca and We instead of a more com-
mon choice of the Morton and Eötvös numbers, Mo = gl4/(qr3),
Eö = qgD2/r; however, if the bubble moves at the terminal condi-
tions, Ca and We are uniquely related to these two numbers, at
least in clean systems (Clift et al., 1978).

In this paper, we will show that the measurement error of the
local void fraction caused by the probe intrusive nature can be cor-
related with M and eventually a kind of correction can be applied.
We will see that probes with a long tip might noticeably deform
during the interaction, increasing greatly the measuring error.
We will demonstrate that the probe intrusive nature causes an
important deviation of ps,op(s) from ps(s). The ps,op(s) data, ob-
tained on basis of our experiments in stagnant liquid, will be com-
pared with that obtained by Andreotti (2009) in his airlift
experiment, in which the liquid flows. The agreement will suggest
that conclusions of this work are (to some extent) applicable also
to the case of moving liquid. Finally, it will be demonstrated that
the importance of probe’s intrusive nature can be evaluated also
on the basis of ps,op(s) data, if these are obtained in a mono-dis-
persed and uniform bubbly flow.

2. Description of experiments

2.1. Experimental setup

The experimental setup used in this study is depicted in Fig. 3.
The bubble-probe interaction was studied in a rectangular glass
vessel with a square bottom of inner size 11 � 11 cm and height
of 26 cm. A bubble generator was placed in the vessel bottom.
The bubble generator is a device that produces bubbles of pre-
scribed size by imposing their detachment by a rapid needle mo-
tion (Vejrazka et al., 2008). The optical probe was inserted into
the vessel from the top. It was the ‘‘Type 1C Probe” delivered by
A2 Photonic Sensors Ltd., Grenoble, France. The probe consists of
a metallic body (1.5 mm in diameter), from whose end the optical
fiber protrudes by 15 mm. The fiber diameter was Dop = 0.13 mm
and its tip, produced by etching process, has an apex angle of
30�. The probe was fixed to a 2D traversing device, by which its po-
sition was adjusted in the horizontal plane. The probe tip was lo-
cated typically 2 cm above the tip of bubble generator’s needle.

The interaction of the optical probe tip with a bubble rising in a
stagnant liquid was recorded by a high-speed camera (Redlake HS-
4), at frame rate ranging from 3500 to 15,000 fps (typically 10,000
xperimental setup.



Table 1
Physical properties of used liquids.

Liquid wt. concentration (%) T (�C) q (kg m�3) l (MPa s) r (mN m�1) Mo (�)

Water – 30.1 995.6 0.797 71.2 1.10 � 10�11

Glycerin 8 60 25.9 1152.0 8.87 65.3 1.89 � 10�7

Glycerin 20 70 27.1 1174.2 13.6 60.5 1.29 � 10�6
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fps), with resolution of at least 170 � 512 pixels. The camera was
fit with Nikon AF Nikkor 50 mm f/1.8D lens, which was mounted
using extension rings of length ranging from 20 to 48 mm. The lens
was mounted reversely with help of a reversion ring (i.e. the objec-
tive was oriented with its frontal lens toward the camera body).
The optical magnification was ranging from 0.8 to 1.23, the camera
pixel pitch was 12 lm and the resulting image scale was thus rang-
ing from 9.6 to 14.8 lm/pixel. The bubble-probe interaction was
observed in diffuse backlight. The illumination system consisted
of a 500 W halogen lamp and two diffusers (opaque glass plates,
not shown in Fig. 3). In front of the lamp, there was a 10 cm thick
glass vessel (also not shown in Fig. 3) filled with water to protect
the experimental vessel from lamp’s heat.

A computer instrumented with a multifunction data acquisition
board (National Instruments PCI-6221) recorded the output signal
from the optical probe and also the camera synchronization signal.
The acquisition rate was 125 kHz for each channel. A care was ta-
ken about proper synchronization of the probe signal recording
and the high-speed imaging.

2.2. Experimental conditions, procedures and data processing

The experiments were performed with air bubbles in water and
in two glycerin solutions. The water was distilled and additionally
filtered by a set of ionic resin filters and an activated carbon filter.
The glycerin solutions were prepared using water of the same
quality and pure p.a. grade glycerin. See Table 1 for physical prop-
erties of the liquids. The air was dried and filtered with a particle
and activated carbon filters.

When experimenting, a bubble was produced by the bubble
generator, the optical probe signal was recorded and the high-
speed movie of the bubble-probe interaction was acquired syn-
chronously. The high-speed images were then treated using sin-
gle-purpose software, which was written in Matlab� and which
used the Image Processing Toolbox. The treatment consisted of
two major steps: (A) Image processing, during which the points
Table 2
Operating conditions of present experiments.

Liquid D (mm) u1 (cm/s) v (�) C (�) We (�)

Water 0.69 18.1 1.05 0.527 0.32
Water 0.89 25.3 1.12 0.571 0.79
Water 1.12 30.6 1.26 0.657 1.47
Water 1.48 35.9 1.62 0.878 2.67
Water 1.78 36.6 1.97 1.098 3.34
Water 2.23 33.6 2.45 1.399 3.52
Glycerin 8 1.16 11.2 1.02 0.511 0.26
Glycerin 8 1.45 8.4 1.05 0.528 0.18
Glycerin 8 1.50 13.8 1.06 0.535 0.50
Glycerin 8 2.18 21.2 1.18 0.611 1.73
Glycerin 8 3.01 26.0 1.51 0.810 3.59
Glycerin 20 1.26 10.3 1.02 0.509 0.26
Glycerin 20 1.39 11.1 1.02 0.512 0.33
Glycerin 20 1.52 11.5 1.03 0.517 0.39
Glycerin 20 1.84 17.8 1.06 0.534 1.13
Glycerin 20 2.31 19.9 1.13 0.579 1.77
Glycerin 20 2.80 21.8 1.27 0.661 2.58
Glycerin 20 3.03 22.4 1.34 0.709 2.95
laying at the bubble boundary were detected, and (B) boundary fit-
ting, during which the detected boundary was fitted with a smooth
curve, and the bubble size and position of its center-of-mass was
found for this smoothed boundary.

The step (A) consisted of following sub-steps: (i) A background
image was subtracted from each treated frame. (ii) The frames
were transformed to binary images by comparing pixel values to
a threshold. (iii) Isolated small objects, appearing due to image
noise, were removed. (iv) Boundary pixels of the resulting object
(bubble) were detected in each frame. (v) These boundary curves
were smoothed for each frame. The smoothing procedure was
visually checked to preserve the bubble shape with good accuracy.
This smoothed boundary was stored for each frame and it was used
for constructing the phase-indicator functions wg and wref, which
will be described in Section 2.3.

For the step (B), a double-ellipse curve (curve consisting of two
halves of an ellipse, with the same semimajor axis ax, but different
semiminor axes az1 and az2, and inclined by h, Fig. 2) was found as
the best fit of smoothed bubble boundaries. This fitted boundary
was then used for inferring the following parameters for each im-
age frame (Fig. 2): the semimajor axis ax, semiminor axes az1 and
az2, the aspect ratio v = 2ax/(az1 + az2) and the inclination angle h.
The center-of-mass coordinates xb and zb and the bubble volume-
equivalent diameter D were calculated, assuming bubble axial
symmetry. The bubble velocity was calculated by differentiating
the center-of-mass position. Finally, the bubble-probe offset x
(Fig. 2) was found as a difference between xb and the horizontal
probe position in the last frame before contact.

When experimenting, the bubble generator was adjusted to
produce bubbles of a given size. The offset y (same as x, but in
the direction parallel with the camera axis) was carefully set to
zero. To do so, the probe was moved both in +y and –y direction
to positions, when the bubbles just touch the probe, and then the
probe was placed in the middle of these two positions. The probe
was then moved step-by-step to positions with different bubble-
probe offsets x. This scanning across the bubble was repeated for
Re (�) Ca (�) Eö (�) M (�) C M v2/3 (�)

156 2.03 � 10�3 0.065 1.68 0.91
280 2.83 � 10�3 0.107 5.39 3.32
428 3.43 � 10�3 0.172 12.6 9.66
663 4.02 � 10�3 0.300 30.3 36.7
816 4.10 � 10�3 0.436 45.9 79.2
937 3.76 � 10�3 0.683 60.5 154
16.9 1.52 � 10�2 0.234 2.30 1.19
15.8 1.14 � 10�2 0.363 2.01 1.09
26.9 1.87 � 10�2 0.389 5.81 3.23
60.0 2.88 � 10�2 0.822 29.0 19.8
102 3.53 � 10�2 1.57 83.0 88.4
11.2 2.31 � 10�2 0.301 2.50 1.29
13.4 2.49 � 10�2 0.368 3.56 1.85
15.1 2.58 � 10�2 0.437 4.54 2.39
28.3 3.99 � 10�2 0.642 16.0 8.85
39.7 4.46 � 10�2 1.01 31.5 19.8
52.8 4.89 � 10�2 1.49 55.6 43.0
58.7 5.02 � 10�2 1.75 68.7 59.3
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several bubble sizes in each liquid. The bubble size ranged from 0.7
to 3 mm and the corresponding characteristics of bubbles (equiva-
lent diameter D, first-contact velocity u1, aspect ratio v = 2ax/
(az1 + az2), added-mass coefficient C, and dimensionless numbers
We, Re = qu1D/l, Ca, Eö and M) are presented in Table 2. The
added-mass coefficient C was calculated from the bubble aspect ra-
tio following Lamb (1932, §114) as:

C ¼ KðvÞ
2�KðvÞ ; ð2Þ

where

KðvÞ ¼
Z 1

0

dk

ðkþ v�4=3Þ3=2ðkþ v2=3Þ
ð3Þ

and k is an integration parameter.
The bubbles were rising vertically and their inclination h was

negligible at the time they hit the probe. Their shape was steady,
with exception of the largest bubble in water, which was slightly
wobbling (az1 and az2 were evolving during the bubble rise, while
ax and az1 + az2 remained almost constant). The bubbles hit the
probe with velocity u1 close to its terminal-rise value. Fig. 4a com-
pares the bubble velocity (at the time of first contact with the
probe) to the Moore’s (1965) prediction for terminal rise, and
Fig. 4b compares the aspect ratio v with the same prediction. In
the case of water, Moore (1965) over-predicts v for larger bubble
sizes. This is a known weakness of the Moore’s estimate (Duineveld
1995), which leads also to a slight under-prediction of the rise
velocity for larger bubble sizes (it is also visible in Fig. 4a). The
agreement for the rise velocity is, however, generally good and this
suggests that the bubble interface was not contaminated and was
mobile. In the case of glycerin solutions, the observed rise veloci-
ties are higher than the prediction. This is caused by an inappropri-
ateness of Moore’s model for the case of relatively low Reynolds
number (Blanco and Magnaudet 1995). Surfactant presence is dif-
ficult to avoid in glycerol solutions and it might be responsible for a
certain scatter of experimental data.
Fig. 4. Comparison of experimentally observed: (a) bubble rise velocity and (b)
bubble aspect ratio with prediction of Moore (1965).
The estimations of the experimental errors are provided: The
image processing itself is very precise owing to good quality of ac-
quired high-speed movies. The boundary points are within ±1 pixel
from the real boundary and the same estimates hold for the error
of the bubble size (the bubble size was typically larger than
100 pixels). The error of the bubble velocity is below 2% before
the first contact of the bubble with the probe. In the case of the
bubble that is in contact with the probe, the velocity error consid-
erably increases because the double-ellipse fit is no more suitable
for fitting the bubble shape. Consequently, the evaluation of cen-
ter-of-mass position is less accurate. We believe that the velocity
error is still lower than 5% of the initial velocity in these cases. In
the case of non-zero bubble-probe offset x, the bubble moreover
losses its axial symmetry and it is principally not possible to fully
reconstruct its three-dimensional shape (hence also center-of-
mass position and velocity); evaluation of error is difficult in this
case. Finally, the accurate setting of y offset to zero is essential
for proper interpretation of present experiments, because the bub-
ble projection observed by the camera is meaningful only in this
case. The real offset in y direction was within ±0.02 mm from zero;
this value corresponds to a play of the traversing device.
2.3. Definition of phase-indicator functions

On basis of the experimental data, we construct three different
phase-indicating functions w(t). One of them (wop) is based on the
optical probe signal, while the two others (wg and wref) are created
using the information provided by high-speed imaging. We remind
that the instantaneous value of w is zero if the probe tip is located
in the liquid and it is unity if the tip is in gas. To construct the
phase-indicator function, the time of bubble first contact with
the probe tip t1 and the time of last contact t2, when w(t) should
switch, have to be determined. The dwell time of the measuring
location within the bubble is found as s = t2–t1.

The optical probe phase-indicating function wop is obtained
from the photodetector voltage signal S(t) by comparing it with a
threshold value DSmin (Fig. 5a), which was set slightly above the
noise level of the ‘‘in liquid” signal. The time of first contact top1

is the instant when the threshold level is exceeded. Juliá et al.
(2005) and Barrau et al. (1999) discuss two different criteria for
the determination of the last-contact time top2: either (i) falling
back below the threshold level or (ii) the instant of last signal max-
ima before this fall. We have used the latter criteria. Owing to the
large signal slope, both top1 and top2 were insensitive to the thresh-
old level DSmin or to the choice of the last contact instant criteria.
Note that Juliá et al. (2005) reported sensitivity to the last contact
criteria, especially when the bubble touches the probe very near its
equator. Smaller sensitivity in our case might be a consequence of
a much sharper tip of etched probe used in this study.

Following Juliá et al. (2005), a phase-indicating function, de-
noted as wg in this paper, is constructed on basis of the high-speed
imaging. For each image, the distance d (Fig. 5b) between the probe
tip and the nearest point of bubble boundary is measured. If the
probe tip is inside the bubble, d is considered negative. The first
and the last-contact times tg1 and tg2 are found by interpolating
for zero d. The images used for building wg are obtained during
the bubble–probe interaction, when the bubble is perturbed by
the contact with the probe. The phase-indicator function wg is
therefore influenced by the probe intrusive nature. As it will be
shown later, the optical fiber exposed to the flow is long enough
to bend and hence the sensitive tip is laterally displaced during
the interaction with the bubble. Because the distance d is evaluated
toward the initial position of the probe tip, wg is free of probe
deformation effects. Yet, it includes the distortion of the bubble
shape.



Fig. 5. Reconstruction of phase-indicator functions for: (a) optical probe, (b) rigid probe (based on high-speed imaging), (c) reference probe (based on high-speed imaging).
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The high-speed imaging provides also a phase-indicating func-
tion wref, which is based only on images obtained before the first
bubble contact with the probe. It is assumed that the approaching
bubble maintains its initial shape, velocity and direction. The shape
is determined from the last frame (taken at time t0), in which the
probe tip is still observed outside the bubble. The distances l1
and l2 (see Fig. 5c) are measured and the corresponding instants
of the first and the last contact are calculated as tref1 = t0 + l1/u1

and tref2 = t0 + l2/u1, respectively. The phase-indicator function wref

is based only on a single image taken at time t0 and on the bubble
velocity before contact u1; wref is hence not affected by the probe
intrusive nature. This phase-indicator function is meaningful only
if bubbles are rising with a constant velocity before the first con-
tact and if they are not changing their shape. Both these conditions
were satisfied in the present study.

The following discussion on measurement accuracy of optical
probes is based on a comparison of the three phase-indicator func-
tions. The function wop issues from the optical probe signal, as de-
scribed above. The function wg, based on high-speed images,
could be produced by an imaginary probe, which has the same
intrusive character in terms of interface deformation and bubble
trajectory modification as a real optical probe, but which does
not deform; this imaginary probe will be thereinafter referred to
as a rigid probe. Finally, wref could be produced by another imagi-
nary probe, which is free of intrusive character. We refer to this
imaginary probe as reference probe and we will use its signal wref

for reference purposes when studying intrusiveness of the real
optical probe.
3. Experimental results

3.1. High-speed imaging observations

The typical video records of the bubble-probe interaction are
displayed in Fig. 6. No change of bubble velocity or shape was ob-
served during its approach to the optical probe tip. This could be
indeed expected as the probe tip is sharp and its diameter is small
compared to the bubble size. To put this behavior in perspective,
let us recall that in the case of cleaved probes with relatively large
diameter compared to bubble size, strong deceleration occurs be-
fore contact (Wedin et al., 2003).

The bubble gets disturbed only after coming in contact with the
optical probe tip. The large bubbles move more or less with their
initial velocity (Fig. 6a and b). Their interface is deformed in the
region that touches the probe. In the case of small bubble-probe
offset, their upper part gets concave. Smaller bubbles are also de-
formed and their motion is more affected (Fig. 6c and d). In the
case of small offset, bubble can stop or even move down during
the contact and it is then deflected from its initial trajectory a
while after (Fig. 6c). The deflection remains important in the case
of non-zero bubble-probe offset (Fig. 6d). These changes of bubble
shape and velocity are a consequence of probe’s intrusive nature.
Finally, a deformation of the optical probe is observed if the bubble
is pierced near its equator. This is visible in Fig. 6b and d, where the
initial probe position is shown by an arrow.

The bubble disturbance from the probe is further documented
in Fig. 7, where the initial and terminal bubble shapes are com-
pared. The background photos were taken at time tref2, when the
bubble would have the last contact with the reference probe
(which is non-intrusive). The dotted contours show the shape
and position of the non-disturbed bubble at this time, i.e. it is
the bubble contour at time t0 just shifted by distance l2 (Fig. 5c)
in direction of bubble motion. This dotted contour would overlap
with the observed bubble shape if the bubble is not affected by
the probe. This is not the case, as bubble changes its velocity and
shape during its interaction with the probe.

In agreement with Juliá et al. (2005), two different bubble
behaviors are observed in dependence of bubble-probe offset x.
In the case of small x (first column in Fig. 7), the bubble is deceler-
ated during the interaction. This is apparent from the bubble posi-
tion, which is lower than the expected position of non-disturbed
bubble. As a result of this deceleration, the probe tip is still located
inside the bubble at ideal last-contact time tref2. The deceleration is
hence delaying the last-contact time top2 indicated by the probe,
compared to tref2.

In the case of larger x (third and fourth columns in Fig. 7), the
vertical bubble position corresponds roughly to an expected posi-
tion for non-perturbed bubble, or it is even higher. This shows that
the bubble can oppositely accelerate when piercing near the equa-
tor. A significant bubble deformation is observed in the part of
interface, which is touching the probe. Due to this horizontal
shrinking, the probe tip is already located outside the bubble at
time tref2. This suggests that the bubble deformation advances
the last-contact time top2, indicated by the probe, when compared
to tref2.

The last-contact time indicated by the probe, top2, is hence de-
layed in the case of piercing at small x (near the pole), and it is
oppositely advanced when piercing at large x (near the equator).
These two effects are attributed to bubble deceleration and defor-
mation, respectively, and they counteract. For a specific offset, they
cancel each other, and the optical probe indicates the ideal last-



Fig. 6. High-speed records of the bubble-probe interaction in water. The bubble size and the frame interval are (a) and (b) D = 2.23 mm, 997 ls; (c) and (d) D = 1.12 mm,
710 ls. In (c), some frames are omitted. Arrows and lines in (b) and (d) indicate the initial position of the optical probe to show its deformation.
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contact time, top2 = tref2. Corresponding terminal bubble shapes are
shown in the second column of Fig. 7. It is seen from these figures
that even at this offset, at which the probe indicates correct last-
contact time, the bubble is perturbed by the interaction with the
optical probe.

3.2. Probe signal and phase-indicating functions

The typical time series S(t) of optical probe output is shown in
Fig. 8 for three bubble-probe offsets. Differences in the duration
of the ‘‘gas level” part of signal are the only noticeable changes
when the offset x is modified (compare Figs. 8a and b). The signal
approaches to a ‘‘bell shaped” signal described by Cartellier (1992)
and Juliá et al. (2005), when the probe hits a very border of the
bubble (Fig. 8c). The falling edge of such signal is less steep. This
effect is, however, of lower importance here than observed by Juliá
et al. (2005), possibly because of a sharper probe tip.

The three phase-indicating functions deduced from either the
optical probe signal (wop) or high-speed imaging (wg, wref) are also
compared in Fig. 8. The first contact time of the three phase-indi-
cator functions is almost the same. This demonstrates the negligi-
ble effect of the probe on bubble behavior before the first contact
and it is consistent with observation and analysis of the local inter-
face deformation during piercing (Liju et al., 2001). Oppositely, the
three last-contact times significantly differ. Previously discussed
effects of delaying top2 relative to tref2 in the case of small x
(Fig. 8a) and of its advancing for large x (Figs. 8b and c) are re-
flected. We will hence concentrate on the shift of the last-contact
time.

The comparison of wop and wg is quite revealing. For most bub-
ble-probe offsets (Fig. 8a), they are very similar and their minor
difference can be attributed to the experimental uncertainty (error
on time information in wg is related to the time interval between
movie frames, which was about 0.1 ms). The similar character of
wop and wg is expected, as both indicate if the probe tip is inside
or outside the bubble. Only when the probe touches the bubble
near its equator (Fig. 8b and c), an important difference between
wop and wg appears. Both functions give the same result on the first



Fig. 8. Optical probe signal S(t), and phase-indicating functions wop(t), wg(t) and wref (t) for three cases shown in Fig. 7. Arrows show the falling time of wg (i.e. last contact tg2),
if it is evaluated with respect to final probe position.

Fig. 7. Comparison of the initial and the terminal bubble shape. Snapshots are taken at time tref2. White dotted lines show the bubble contour at time t0, which was displaced
by distance l2 in direction of velocity vector u1 (see Fig. 5c). Arrows indicate the position of the probe tip before the first contact with the bubble. Time sequence for cases d1,
d3, a1 and a3 is shown in Fig. 6. Observations in water, bubble sizes are 1.12, 1.48, 1.78 and 2.23 mm (from the top).
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contact time, but they noticeably differ in the last-contact time.
Most of this difference can be attributed to the probe deformation.
The probe bends after the contact with the bubble, and thus the
probe sensitive tip is displaced outwards the bubble. Function wg

was evaluated with respect to the probe initial position. If it is
reevaluated by taking in account the final probe position instead,
the last-contact time tg2 occurs sooner (it is indicated by an arrow
in Fig. 8b and c) and it corresponds well to top2. From these obser-
vations, we can draw two conclusions: (i) The rigidity of the optical
probe tip is of concern for proper measurements in bubbly flows
and it affects the dwell time measured near the equator. (ii) If
the probe deformation is taken in account, the phase-indicator
function wg corresponds well to wop. This suggests that wop indi-
cates correctly which phase is present at the probe tip. Finally,
we remark that the shortness of time, which the probe needs to re-
turn to its initial position (of order of 1.5 ms, Fig. 6d), suggests that
only the protruding glass part of the optical fiber deforms.
It is obvious that the imperfections of the optical probe (intru-
siveness and deformability) introduce an error on the determina-
tion of the last-contact time t2 and thus also on determination of
the bubble dwell time s. In Fig. 9, the dwell times determined from
the three phase-indicating functions are compared for bubbles of
several sizes and in different liquids. The dwell time is plotted in
a dimensionless form, T = su1/(az1 + az2), against dimensionless
bubble-probe offset, X = x/ax. The dimensionless dwell time Tref, ob-
tained from the reference phase-indicator function wref, follows
well the relationship

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

p
; ð4Þ

which is expected from geometrical considerations about the ob-
served ellipsoidal bubble shape (Fig. 2). This agreement supports
our usage of wref as a reference for quantifying the error of the opti-
cal probe measurement. The strongest deviation between wref and
Eq. (4) is found in the case of the largest bubble in water (Fig. 9c),



Fig. 9. Comparison of dimensionless dwell times Top, Tg, Tref and Eq. (4). Experimental liquid and equivalent bubble diameter D are: (a) water, 1.12 mm; (b) water, 1.48 mm;
(c) water, 2.23 mm; (d) glycerin 8, 1.45 mm; (e) glycerin 8, 3.01 mm; (f) glycerin 20, 1.84 mm; (g), glycerin 20, 2.80 mm. (a–c) correspond to the first, second and fourth row
in Fig 7, respectively.
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and it is caused by a slight wobbling of this bubble. It is reminded
that the concept of wref is not meaningful for bubbles with unsteady
shape and the case shown in Fig. 9c is considered being at the limit
of usability of wref as a reference.

Fig. 9a–c show the profiles of dwell time across the bubble for
three different bubble sizes in water. Both sop and sg substantially
differ from the ideal dwell time profile sref for bubble sizes
1.12 mm (Fig. 9a) and smaller. An important overestimation of
dwell time near bubble pole is evident. An inspection of high-speed
movies shows that at zero bubble-probe offset, the bubble stops at
the probe tip (Fig. 6c). For sub-millimeter bubble sizes, even a bub-
ble rebound downward from the tip is observed. With increasing
bubble size, sop and sg approach to sref, but some deviations are al-
ways observed (Fig. 9b and c). Coherently with the previous obser-
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vations, sop and sg overestimates the dwell time when piercing the
bubble near its pole (X � 0) and underestimates it near the equator
(X � �1 or +1). The range of offsets, for which the dwell time is
overestimated, is slightly growing with increasing bubble size. This
effect is probably related with an increase of the bubble aspect ra-
tio v.

Fig. 9d–g also shows the dwell time profiles, but obtained in
glycerin solutions. Behavior is similar to that identified for water,
except that bubbles of bigger size are now needed to get a sop,
which approaches to sref. This difference is related to the change
in the bubble rise velocity. The difference between sop and sg is
more pronounced in glycerin solutions than in water. The error
due to probe deformation is hence more important in glycerin
solutions. It is perhaps a consequence of longer dwell time, yield-
ing to stronger impulse of forces bending the probe.
3.3. Change of bubble velocity

At this point, it is useful to identify a dimensionless complex,
which characterizes how much the bubble is perturbed by the
probe. For this purpose, we will consider the equation of bubble
motion and using it, the change of bubble velocity will be esti-
mated. Only the case of on-axis piercing (X = 0) is considered now.

The bubble motion equation writes as a balance of buoyancy,
drag, history and added-mass forces. When the bubble enters into
contact with the probe tip, a supplementary contact force appears
and decelerates the bubble. Let us assume that the bubble is large
and that its deceleration and hence the change of velocity are
small. The buoyancy and drag can be then neglected, because they
cancel each other. The history force can also be neglected, owing to
high Reynolds number and small acceleration. The history force
points upward and neglecting it thus tends to an overestimation
of the bubble deceleration. The same holds for the buoyancy de-
creased by the drag. The remaining balance consists only of the
added-mass force and the contact force. The added-mass force,
which represents the inertial force of the liquid set in motion by
the bubble, is

Fm ¼ �qV
d
dt
ðCuÞ; ð5Þ

where V is the bubble volume, u is the bubble velocity and C is the
added-mass coefficient (see Brennen, 1982; Magnaudet and Eames,
2000, or Simcik et al., 2008, for discussion on the added-mass force).
To estimate the contact force, we assume a bubble shape with a
meniscus and a wetting liquid film terminated by a three-phase line
at the probe tip (Fig. 10). The three-phase line requires the surface
Fig. 10. Control volume for momentum balance of a bubble, which is in contact
with the optical probe. Solid line – assumed bubble boundary, dashed line – control
volume for momentum balance.
tension to be included in the force balance. The contact force is esti-
mated to scale with –prDop and we can hence write for it

Fc ¼ �b � prDop; ð6Þ

where b is a coefficient of the scaling and it is expected to be close
to unity. The force balance Fm + Fc = 0 then yields for bubble
deceleration

du
dt
¼ �u2

1

D
6b
CM
þ u

u1C
� D
u1

dC
dt

� �
; ð7Þ

where M = (qD2u1
2)/(rDop) is the modified Weber number. The fac-

tor u1
2/D in front of brackets is an acceleration scale, the first term

in brackets is a dimensionless bubble deceleration due to the con-
tact force, and the second term in brackets is the dimensionless
bubble deceleration due to a change of C. We will neglect this latter
term. This is reasonable for the zero bubble-probe offset (X = 0) be-
cause the bubble frontal area does not change significantly (observe
first column in Fig. 7) and thus C remains unaltered. Omitting this
term is not justified, however, if the probe pierces the bubble near
its equator.

The period of time, during which the bubble decelerates, is of
order of the dwell time and thus it scales as (az1 + az2)/u1. Geomet-
rical considerations yield az1 + az2 = v–2/3D. The bubble velocity at
last-contact time is therefore estimated

u2 ¼ u1 1� 6b
v2=3CM

� �
: ð8Þ

Finally, we can estimate how the dwell time sop differs from sref. The
bubble has to travel over distance az1 + az2 between the first and the
last contact. The bubble velocity is decreasing from u1 to u2, and the
time needed to travel this distance becomes longer. The average
velocity is 1

2 ðu1 þ u2Þ and assuming sref = (az1 + az2)/u1 then yields
for the dwell time

sop ¼ sref 1� 3b
v2=3CM

� ��1

¼ az1 þ az2

u1
1� 3b

v2=3CM

� ��1

: ð9Þ
Fig. 11. Change of (a) bubble velocity and (b) dwell time during the bubble-probe
interaction at zero bubble-probe offset, X = 0.



Fig. 12. The z-component of bubble mean acceleration as function of bubble-probe
offset for (a) 1.48 mm bubble in water, (b) 2.23 mm bubble in water.
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We remind that the estimations leading to Eqs. (8) and (9) assumed
zero bubble-probe offset.

We will compare the prediction (8) and (9) with experimental
data. We assume b = 1, which is expected if the film deposited on
the probe is thin and the apparent contact angle is small. Fig. 11a
compares the estimation (8) with the experimental data. The
velocities u1 and u2 were determined from the experimental data
as the z-component of bubble center-of-mass velocity at times tref1

and tref2, respectively. Eq. (8) correctly predicts the velocity change
in the case of large and/or fast bubbles, which are characterized
by v2/3CM > 10. For smaller bubbles, the velocity decrease is less
important than the estimate given by (8). This difference is only
partly explained by neglecting the history, buoyancy and drag
forces. For the case of water, we have performed a calculation of
bubble motion using a model, in which the added-mass force, con-
tact force, buoyancy, drag (following Moore 1965) and the history
force (with Yang and Leal’s kernel, 1991) are considered. The mod-
el details are given in Appendix A. The dependence of u2/u1 ratio
on v2/3CM, obtained from this model for water, is shown by a
dashed line in Fig. 11a. Although it slightly approaches to the
experimental data, this model still fails for v2/3CM < 10.

Fig. 11b compares the experimental values of dwell time with
its estimations from Eq. (9), again assuming b = 1. Again, the pro-
posed scaling agrees well with the measurements for v2/

3CM > 10. In the range v2/3CM < 10, which corresponds to smaller
bubble size, the experimental points are widely scattered. In these
cases, it is visually observed that the bubble stops its vertical mo-
tion and either rebounds from the optical probe tip, or leaves it lat-
erally. (Observe also the downward motion of the bubble in last
three frames of Fig. 6c, which corresponds to the data point for
water with v2/3CM = 10.) The source of data scatter may be due
to a high sensitivity of bubble behavior to the bubble-probe offset
in case of bubbles, which stops at the probe tip and then leaves it
laterally (as shown in Fig. 6c).

It is seen that the experimental data on u2/u1 and sop/sref,
obtained in all three liquids, fall on a single curve, if plotted
against v2/3CM (at least for the range v2/3CM > 10). This demon-
strates that the complex v2/3CM is a suitable dimensionless param-
eter for characterizing the bubble deceleration if the bubble-probe
offset is small. Since both v and C are functions of bubble
shape, which depends essentially on the Weber number, the
expression v2/3CM could be replaced by M�f(We) in Fig. 11a and b.
The collapse of data on a single curve suggests that the capillary
number has only a minor effect on the bubble motion. It is noted
that Ca influences the relative importance of the history force (com-
pared to the surface-tension force), but also the behavior of the
three-phase contact line (de Gennes et al., 2004) at the probe tip
and eventually the thickness of the liquid film deposit on the probe
(Quéré, 1999).

According to the above reasoning, a non wetting liquid is ex-
pected to produce an opposite effect, i.e. a bubble acceleration
leading to a shorter dwell time than the ideal one. It is also re-
marked that the Eq. (7) and hence also (8) and (9), developed for
the case of still liquid, should remain valid also in the case of liquid,
which flows vertically with a constant velocity. In the latter case, u
should be considered as an absolute bubble velocity. An experi-
mental prove of the validity for moving liquid is missing, however.

The development of (8) and (9) and the results in Fig. 11 repre-
sented the case of zero bubble-probe offset. To complete the pic-
ture of bubble-probe interaction, Fig. 12 shows the average
bubble acceleration in the vertical direction (in a dimensionless
form, Az = (u2 – u1)/sref�D/u1

2) for various bubble-probe offsets and
two bubble sizes. It is reminded that these results can be biased
by much larger error compared to previous results for on-axis
piercing, because the bubble losses axial symmetry that is assumed
in the calculation of bubble center-of-mass position, from which
the velocity is deduced. Nevertheless, it is seen that the bubble
deceleration is more or less constant for |X| < 0.5 and it roughly
corresponds to the value predicted by Eq. (7), which is shown by
a dashed line (the term containing dC/dt in brackets of this equa-
tion was neglected). When the bubble is pierced near its equator
(|X| > 0.7), the acceleration becomes positive, i.e. the bubble accel-
erates upward during the interaction. We attribute this accelera-
tion to the bubble shrinking in the horizontal direction, which
leads to a decrease of bubble frontal area and hence also of its
added-mass C. The second term in brackets of Eq. (7) then prevails
the first one and the bubble acceleration changes sign (see e.g. Lun-
de and Perkins, 1998, and de Vries et al., 2002, for motion of a bub-
ble, which is changing C).

For a non-zero bubble-probe offset, the bubble gains also some
horizontal velocity during the interaction with the probe tip.
Fig. 13 shows the average bubble acceleration in the horizontal
direction (again in a dimensionless form, Ax = u2x/srefD/u1

2, where
u2x is the horizontal component of bubble center-of-mass velocity
at time tref2). The remarks made on the precision of results pre-
sented in Fig. 12 apply also to this figure. Despite these reserves,
the horizontal acceleration of the bubble happens to vary more
or less linearly with the bubble-probe offset. The dimensionless
acceleration Ax is (similarly as Az) decreasing with the bubble size.

3.4. Error on void fraction measurements

It was shown in Section 3.2 that the dwell time sop measured by
the optical probe generally differs from the reference dwell time
sref. In this part, we will quantify the impact of this difference on
the accuracy of void fraction measurements.

Let us assume a bubbly flow, which is composed of bubbles of
the same size and shape that all move with the same velocity in
a direction parallel to the probe axis. The bubbles hit the optical
probe at random bubble-probe offsets, as outlined in Fig. 1. Let
px(x) be the density function of the probability that a bubble will
move around the probe with an offset x. The function px(x) is
increasing linearly with |x|, because of the quadratic increase of
area restricted by a given radius. If only bubbles, which hit the



Fig. 14. Error on voidage measurements.

Fig. 13. The horizontal component of bubble mean acceleration as function of
bubble–probe offset for (a) 1.48 mm bubble in water, (b) 2.23 mm bubble in water.
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probe, are selected from an ensemble of all bubbles in the flow of
interest, it is found

pxðxÞ ¼
2x=a2

x for x 6 ax;

0 otherwise:

(
ð10Þ

(we consider only x P 0 in this equation, as it is a radius). It holds
for the mean value of the dwell time

s ¼
Z 1

0
pxðxÞsðxÞdx ¼ az1 þ az2

u1

Z 1

�1
jXjTðXÞdX: ð11Þ

The dimensionless dwell time Tref agrees reasonably with Eq.
(4), see Fig. 9. We will therefore consider that it holds for the mean
dwell time sref found by the reference probe

sref �
az1 þ az2

u1

Z 1

�1
jXj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

p
dX ¼ 2

3
� az1 þ az2

u1
: ð12Þ

If the mean dwell time (or void fraction) determined by the
optical probe is compared with the reference probe, it is obtained
for its relative error

eop ¼
sop

sref
� 1 ¼ aop

aref
� 1 ¼ 3

2

Z 1

�1
jXjTopðXÞdX � 1; ð13Þ

and similarly for the rigid probe

eg ¼
sg

sref
� 1 ¼ ag

aref
� 1 ¼ 3

2

Z 1

�1
jXjTgðXÞdX � 1: ð14Þ

Errors eop and eg of void fraction measurements can hence be
obtained by the integration of the dimensionless dwell time pro-
files T(X). Results, obtained by a trapezoidal rule and plotted
against either D or M, are shown in Fig. 14. Both errors are always
negative, i.e. the probe is underestimating the void fraction. This is
linked to the factor |X| in the integrand in (14), due to which the
dwell times measured at large offset contribute more to the mean
dwell time. The underestimation at large |X| therefore is more
important than the overestimation at small |X| (at least for the
measurements of local void fraction).
For the same bubble size and working fluid, the error eg of the
rigid probe is always smaller than that of optical probe, eop. It
was demonstrated that the difference between corresponding
phase-indicator functions, wg and wop, is essentially due to probe
deformation. The error of the void fraction measurements eop thus
can be divided into two parts: in (i) the error due to probe intrusive
nature, eg, and (ii) the error due to probe deformability, eop–eg.

The error eg is expected to depend on the three dimensionless
numbers describing the bubble-probe interaction, M, We and Ca.
Due to the limited amount of data for eg and their experimental
scatter, we are not able to fully estimate this dependence. If eg is
plotted against M only, the results more or less approach a single
curve, Fig. 14b. The error eg is controlled mostly by the bubble
deformation when the probe pierces it near the equator. The col-
lapse of data to a single curve suggests that M is also a relevant
parameter for describing this deformation process. If the deforma-
tion is controlled essentially by capillarity and inertia, the role of M
is explained in this way: The bubble shrinking leads to a horizontal
displacement of a body of fluid adjacent to the bubble by a distance
Dx. The relevant mass scales as �qD3, the force accelerating this
fluid body scales as �rDop and the time available for the accelera-
tion is �D/u1. If we search for Dx, we obtain Dx/D�M–1.

The experimental data on eg are reasonably well fitted by
eg ¼ �0:5M�0:4 ð15Þ
and this relationship (also shown in Fig. 14b) may be used for cor-
recting the void fraction measured by the optical probe. This fit is
only empirical and it should not be used outside the range of
parameters considered in this study (see Table 2). Yet, the above
correction is in agreement with the average errors reported in the
literature. In particular, for millimeter bubbles in water, whose
absolute velocities with respect to the probe were in the range
0.4–1.2 m/s, Barrau et al. (1999) report errors on void fraction rang-
ing from �0.01 (for low velocities) to �0.15 (for large velocities).
These magnitudes are consistent with Eq. (15).



Fig. 15. Comparison of the dwell time p.d.f. data (provided by Andreotti (2009)) to
its estimates based on present experiments. The modified Weber number for
Andreotti’s data and for the present experiment are (a) M = 13.2 and 12.6,
respectively, and (b) M = 48.8 and 45.9, respectively.
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It should be also underlined that the way of determining the error
eg assumes random offset of arriving bubbles, described by the prob-
ability density function p(x) in form (10). In some flows conditions,
the bubble positions cannot be considered as random (e.g. near walls
or spargers) and the correction (15) is then not applicable.

The error due to probe deformability eop–eg should depend on
the probe elasticity and inertia. These probe features introduce
additional dimensionless numbers required for problem descrip-
tion. As these features were not studied in the present work, any
effort to correlate eop on basis of present data is worthless.

Finally, we remark that the application of correction (15) re-
quires that the modified Weber number M is known a priori, which
might not be the case in practical situations. In the case of a mono-
dispersed bubbly flow and a sufficiently rigid probe (sop � sg), M
can be estimated by comparing the maximum measured dwell
time with the mean dwell time. The maximum measured dwell
time sop,max corresponds to the case of zero-offset piercing, for
which (9) holds. The mean dwell time sop is correlated against M
(in form of an error) by (14) and (15). The comparison of both
times yields

sop

sop;max
¼ 2

3
1� 3

v2=3CM

� �
ð1� 0:5M�0:4Þ: ð16Þ

Both parameters at the left-hand side of this equation can be eval-
uated experimentally. If v and C are known or guessed, M can be
estimated by solving the last equation.

3.5. Error on the dwell time p.d.f.

In the previous section, the consequences of the probe intrusive
nature on the mean dwell time were investigated. However, the
interaction between the bubble and the probe modifies also the
dwell time distribution. The expected impact on the dwell time
p.d.f. is examined in this section.

Again, let us assume a bubbly flow composed of bubbles of the
same size and shape, which all move with the same velocity in a
direction parallel to the optical probe axis. The bubbles hit the
probe with a random offset whose p.d.f. px(x) is given by Eq. (10).
Because the dwell time s depends on x, s also is a random variable.
It holds for its p.d.f. ps(s)

psðsÞ ¼ �pxðxðsÞÞ
dxðsÞ

ds
¼ �2xðsÞ

a2
x

dxðsÞ
ds

ð17Þ

where the dependence x(s) expresses the offset x, at which the
dwell time s is measured, and it represents the inverse function
of s(x), which was shown (in a dimensionless form) in Fig. 9. The
minus sign appears in (17) because x(s) is a monotonically decreas-
ing function (we limit here to x P 0). The ideal dependence be-
tween x and s follows the behavior given by Eq. (4) and the ideal
dwell time p.d.f. then is

psðsÞ ¼
2su2

1

ðaz1þaz2Þ2
for s 6 az1þaz2

u1
;

0 otherwise:

8<
: ð18Þ

This is a standard result, which has been derived many times (e.g.
Cartellier and Achard 1991 and references therein), but which is al-
most never observed in practice.

An example of a practically observed dwell time p.d.f. is shown
in Fig. 15. The solid line represents the dwell time p.d.f. (in a
dimensionless form, T = su1/(az1 + az2), pT = (az1 + az2)/u1 � ps),
which has been measured by Andreotti (2009). In his experiment,
an almost mono-dispersed bubbly flow was produced by an array
of 289 capillary tubes (with inner diameter 90 lm and 20 mm
long) in an air-lift loop similar to that used by Cartellier and Rivière
(2001). Hence differently to our experiments reported above, the
liquid was not stagnant in Andreotti’s experiment, but it was flow-
ing upward. The working liquid was a glycerin solution (with den-
sity ranging from 1120 to 1160 kg m�3 and kinematic viscosity
from 6 � 10�6 to 8 � 10�6 m2 s�1). Bubbles were spherical and
the standard deviation of their size was less than 5.5% of the mean
size. The bubble rise velocity (relative to the liquid) was 10 cm/s.
The dwell time was measured using an optical probe of similar de-
sign as that one used in this study, but with 100 lm diameter. The
dwell-time p.d.f. was measured for two different operating condi-
tions. The corresponding gas hold-ups, bubble sizes, bubble abso-
lute velocities (u1) and mean liquid velocities (uL) are given in
Table 3. This table provides also the values of modified Weber
number, which is based on bubble absolute velocity.

As it is seen from Fig. 15, the observed dwell-time p.d.f. consid-
erably differs from the ideal distribution given by (18), which is
also shown. In the case of smaller M (Fig. 15a), ps(s) even has an
inverse character with the highest probability for the short dwell
times. The deviation of observed dwell time p.d.f. from an ideal dis-
tribution is explained by the difference between the measured
dwell time sop and its ideal counterpart s. Fig. 15 shows by dotted
line the dwell time p.d.f., which was obtained using Eq. (17) on the
basis of the dwell time sop profiles measured in this work. The
cases with similar value of M were chosen for comparison and
the corresponding bubble parameters are also provided in Table
3. A relatively good agreement is observed between the ps(s) mea-
sured by Andreotti (2009) and that obtained by Eq. (17) from the
present data. Both p.d.f. differ mostly in the probability of short
dwell times. Results obtained by (17) for short dwell times are in-
deed susceptible to large errors, because the derivative dx(s)/ds
cannot be precisely evaluated for piercing near the bubble equator
(note the insufficient number of experimental points for evaluating
the s(x) dependence near the equator, Fig. 9, that combines with
the distorted response of the probe at large eccentricities).



Fig. 17. Dwell time profile obtained from Andreotti’s (2009) dwell time p.d.f. using
Eq. (21) and its comparison with Top profiles of this work.

Table 3
Operating conditions of Andreotti’s (2009) experiments and of cases of present
experiment chosen for comparison.

Corresponding figure 15a 15b

Andreotti’s (2009) experiments
a (%) 7.27 2.4
D (mm) 1.60 1.58
u1 (cm/s) 19 37
uL (cm/s) 9 27
M (�) 13.2 48.8

Present experiments, cases chosen for comparison with Andreotti’s data
Working liquid Water Water
D (mm) 1.12 1.78
u1 (cm/s) 30.6 36.6
uL (cm/s) 0 0
M (�) 12.6 45.9
kop (�) 2.51 0.69
nop (�) 1.20 1.40
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The calculation of dwell time p.d.f. from the experimental sop(x)
profiles using (17) is technically tricky because of the differentia-
tion of scarce experimental data. To explain the inverse character
of the dwell time profile, we fit therefore the experimental T(X)
profile with an empiric relation

T ¼ kð1� XnÞ1=n
; ð19Þ

where k and n are the adjustable parameters. Fig. 16b shows the
exponent ng found by fitting the Tg profiles (Fig. 9). The value of
ng increases with M and its value ranges from 0.9 to 1.56. Similar
values of the exponent are obtained by fitting the Top profiles, which
ranges from 0.65 to 1.43; we do not show results on nop here, be-
cause the fit (19) is less suitable for Top profiles. However, both ng

and nop are significantly smaller than its ideal value (n = 2), for
which the fit (19) recovers the ideal dwell time profile, Eq. (4).
Fig. 16. (a) Exponent ng found by fitting Tg(X) profiles by Eq. (19). (b) Dwell-time
p.d.f. predicted by Eq. (20) for several values of n, assuming k = 1.
Substituting the empirical fit (19) into (17) yields the expected
dwell time p.d.f., which is in form

psðsÞ ¼
2
s

su1
kðaz1þaz2Þ

� �n
1� su1

kðaz1þaz2Þ

� �nh i2
n�1

for s 6 k az1þaz2
u1

;

0 otherwise:

8<
:

ð20Þ

The coefficient k stretches the ps(s) distribution, while its shape is
given essentially by the exponent n. Examples of ps(s) estimated
by (20) are shown in Fig. 16b for several values of n and for k = 1.
Assuming n = 2, the dwell-time p.d.f. reduces to (18). We see, how-
ever, that the peak in ps(s) moves toward shorter dwell times if the
exponent n decreases. The dwell time p.d.f. gets completely in-
verted for n = 1. Finally, Fig. 15 also compares the dwell time
p.d.f., which were obtained using Eq. (20) by fitting the correspond-
ing dwell time profiles Top(X), to the Andreotti’s results and also to
the p.d.f. obtained using (17) (values of kop and nop, used for the fit,
are given in Table 3). A reasonable agreement is observed especially
in the case of higher M, Fig. 15b.

The relationship (17) between the dependence x(s) and the
dwell-time p.d.f. ps(s) can also be used inversely: if ps(s) is mea-
sured experimentally in a flow with mono-dispersed randomly dis-
tributed bubbles, the s = s(x) profile can be deduced. The
dependence x(s) is found by substituting (10) in (17) and integrat-
ing. One easily obtains

xðsÞ
ax

� �2

¼ 1�
Z s

0
psðsÞds: ð21Þ

and s(x) is then the inverse function of x(s). Fig. 17 shows the dwell
time profiles, obtained from the Andreotti’s data (Fig. 15) in this
way, and compares them with the Top(X) profiles found in this work
for bubbles with similar values of modified Weber number M. Taking
in account the different bubble shape, difference in liquid velocity
and also different probe size, results on the dwell time profile for
the same M are similar. A relatively good agreement of data based
on Andreotti’s experiment with results of this work (Figs. 15 and
17) demonstrates the suitability of M for the description of the probe
intrusive nature. It also demonstrates that results of this work can be
applied (at least to some extent) also to the case of moving liquid.

The s(x) profile, obtained using Eq. (21) from the dwell time p.d.f.
measured in a mono-dispersed bubbly flow, can be used for determi-
nation of the local void fraction error using Eq. (13) in the same man-
ner as the s(x) profiles received in present experiments.
4. Concluding remarks

We have investigated the impact of the intrusive nature of a
mono-fiber optical probe on the measurement accuracy of some
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bubbly flows characteristics. This sensor significantly alters the
behavior of bubbles when they come into contact with the solid
probe. Bubbles pierced near their pole decelerate, and the probe
detects dwell times longer than it should. An opposite effect is ob-
served for bubbles pierced near their equator: as the bubbles
shrink horizontally, the probe tip leaves the bubble sooner com-
pared to an unperturbed bubble, and it indicates shorter dwell
time. For near-equator piercing, the error can be further increased
by the probe deformability: indeed, bubbles are able to displace
the sensitive tip outward and the indicated dwell times are further
shortened.

These observations have important consequences for the use of
optical probes. First, because of the deceleration experienced by
the bubble at zero offset, the maximum detected gas dwell time
gets longer. The maximum detected gas dwell time should hence
not be used as such to infer the maximum chord length through
bubbles except if the deceleration at impact becomes weak en-
ough. The conditions for which this condition is fulfilled have been
investigated in Section 3.3.

Second, the mean gas dwell time does not provide the actual
mean chord length except at large modified Weber numbers. As
a result, the local void fraction indicated by the probe is smaller
than it would be if observed by a non-intrusive method, as shown
in Section 3.4. In the range of parameters covered in this study, the
error on the local void fraction measured by a rigid probe can be
corrected using Eq. (15). This correction requires the modified We-
ber number to be known. It can be estimated by comparing the
maximum and mean dwell time (Eq. (16)). The correction is appli-
cable, however, only to a mono-dispersed bubbly flow. It can al-
ways be used a posteriori to evaluate the typical measurement
uncertainty, anyway.

Third, the dependence of the dwell time error on the piercing
location leads to an important change of the measured dwell time
p.d.f. Consequently, deducing the bubble size distribution by
inverting a formula, which relates the chord p.d.f. to the size
p.d.f. (Cartellier 1999), might lead to erroneous results, if the ideal
probe behavior is assumed. Present experiments also explain rea-
sons, for which the dwell time p.d.f.’s observed in practice strongly
differ from the ideal distribution.

This investigation has provided some necessary conditions un-
der which the raw data collected from an optical probe can be used
with confidence. These conditions are also helpful to select a probe
adapted to a given application. The key parameter is the modified
Weber number, which characterizes the bubble ability to over-
come surface-tension forces arising from the contact with the
probe tip. From our experiments, the modified Weber number
above 50 seems to ensure an uncertainty less than 10% on both
the local void fraction and on the maximum chord length. At the
same time, the rigidity of the optical probe tip should be sufficient
to limit its deformation.

This investigation has also provided a procedure to correct both
the void fraction and the mean chord measurements in flows with
mono-dispersed ellipsoidal bubbles. The dependence of the dwell
time on the bubble-probe offset can be calculated from the dwell
time p.d.f. using Eq. (21) and the error is then obtained by (13).
Although of limited range of applicability, we believe that this pro-
cedure can be useful in many practical situations, at least to pro-
vide the order of magnitude of the measurement uncertainty. It
could be useful for systematic quantification of the measurement
uncertainties associated with various types of probes.

Our investigation was carried out only in stagnant liquid and for
a single probe size. Our data, however, agrees with that obtained
by Andreotti (2009) in his experiments with smaller probe and in
flowing liquid. This agreement suggests that the proposed scaling
is correct and that it can be (at least to some extent) applied also
to the case of moving liquid. These conclusions deserve to be fur-
ther confirmed, anyway, and they should hence be used with a
care. Finally, we have demonstrated that the probe deformability
might play an important role in the measurement uncertainty,
but a quantitative study of this feature is also a due.

An unambiguous interpretation of the detected dwell time into
a form of bubble size distribution whatever the flow regime re-
mains a formidable task. Yet, the proposed methodology to relate
the bubble-probe offset and measured gas dwell time opens the
way to a systematic quantification of the intrusive nature of local
detection probes, and thus to more reliable measurements using
these sensors.
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Appendix A

In this appendix, we describe the model, by which the dashed
line in Fig. 11a is calculated. The model considers a bubble, which
rises steadily at its terminal velocity and which comes suddenly (at
time t1) into contact with the tip of optical probe. After t1, the mo-
tion is modeled by balancing the added-mass force, contact force,
buoyancy force, drag force and history force. Only the rectilinear
motion in the vertical direction is considered. All forces and also
the velocity are hence expressed here as scalars, which are positive
if the corresponding vectors point upward.

The terminal rise velocity and aspect ratio (before t1) are calcu-
lated by balancing the buoyancy and drag forces,

Fb þ FD ¼ 0: ð22Þ

The buoyancy and drag forces are expressed in common way

Fb ¼ qgV ; ð23Þ

FD ¼ �
p
8

CDD2qujuj: ð24Þ

Moore’s (1965) solution for the drag is used, thus the drag coeffi-
cient is calculated as

CD ¼
48GðvÞ

Re
½1þ HðvÞ � Re�1=2�: ð25Þ

For functions G(v) and H(v), see Eq. (2.12) and Table 1, respectively,
of Moore’s (1965) article. The Reynolds number is defined in stan-
dard way, Re = qD|u|/l. The bubble aspect ratio v is also obtained
by Moore’s (1965) prediction

We ¼ 4v�4=3ðv3 þ v� 2Þ v2 sec�1 v�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � 1

q� �2

ðv2 � 1Þ3 ð26Þ

the Weber number is also in standard form, We = qDu2/r. The last
equation defines function v = v(We) in an implicit form. Eqs.
(22)–(26) are solved iteratively, yielding the rise velocity and the
aspect ratio before the first contact with the probe; these values
are denoted u1 and v1, respectively.

At time t1, the bubble comes into contact with the optical probe.
Its velocity starts to evolve in time from the initial value u1 (the ini-
tial condition is hence u(t1) = u1). We assume that the aspect ratio
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remains unchanged even after the contact, v = v1. The evolution of
bubble velocity is calculated by balancing all forces,

Fm þ Fc þ Fb þ FD þ Fh ¼ 0: ð27Þ

The expression for the added-mass force, Fm, is given by Eq. (5).
The added-mass coefficient C is calculated using (2) and (3) and be-
cause of the assumption of unchanging v, C is also constant. The
contact force, Fc, is given by (6), and we consider b = 1. Eq. (23)
holds for buoyancy, and the drag is calculated using (24) and
(25). Finally, the history force is estimated by Yang and Leal’s
(1991) expression

FhðtÞ¼�4plD
Z t

�1
exp

36lðt� tpÞ
qD2

 !
erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36lðt� tpÞ

qD2

s !
duðtpÞ

dtp
dtp: ð28Þ

Yang and Leal’s (1991) solution is valid for spherical bubbles
only, but to our knowledge, there is no solution available for the
case of oblate bubbles. When calculating the history force, the past
accelerations of the bubble are integrated. Consistently with
assumption of steady rise before t1, du(tp)/dtp is zero for tp < t1.

An integro-differential equation for the bubble velocity u(t) is
obtained by substituting expressions for forces into (27). A term
containing the first derivative of velocity appears in this equation
due to the form of the added-mass force, and a term with the inte-
gral of past accelerations appears due to the history force. The
resulting equation is solved numerically using a simple first-order
discretization.

When calculating the last-contact velocity u2, which is shown
by dashed line in Fig. 11a, we proceed in the following way: for a
given bubble size, we calculate the terminal rise conditions, i.e.
u1 and v1. Corresponding values of C and M are calculated. The evo-
lution of velocity u(t) after the first contact is obtained by solving
the system of Eqs. (27), (5), (6), (23), (24), (25), and (28) together
with the initial condition u(t1) = u1. The velocity is integrated to ob-
tain the evolution of bubble position. Last-contact time t2 is found
as time required for displacing the bubble by Dv�2/3 since t1, and
the corresponding velocity u2 is evaluated.

In this way, a single point of the dashed curve in Fig. 11a is found.
All the procedure is repeated for different bubble sizes to obtain the
entire curve. This calculation was carried out only for water, which
was the only liquid allowing the use of the drag law (25).
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